[1] J. R. W. Brownrigg et al., “Performance of prognostic markers in the prediction of wound healing or amputation among patients with foot ulcers in diabetes: a systematic review,” Diabetes Metab Res Rev, vol. 32 Suppl 1, pp. 128–135, Jan. 2016, doi: 10.1002/DMRR.2704.
[2] J. C. De Graaff, D. T. Ubbink, D. A. Legemate, J. G. P. Tijssen, and M. J. H. M. Jacobs, “Evaluation of toe pressure and transcutaneous oxygen measurements in management of chronic critical leg ischemia: A diagnostic randomized clinical trial,” J Vasc Surg, vol. 38, no. 3, pp. 528–534, Sep. 2003, doi: 10.1016/S0741-5214(03)00414-2.
[3] Z. Wang et al., “A systematic review and meta-analysis of tests to predict wound healing in diabetic foot,” J Vasc Surg, vol. 63, no. 2, pp. 29S-36S.e2, Feb. 2016, doi: 10.1016/j.jvs.2015.10.004.
[4] A. Hingorani et al., “A comparison of magnetic resonance angiography, contrast arteriography, and duplex arteriography for patients undergoing lower extremity revascularization,” Ann Vasc Surg, vol. 18, no. 3, pp. 294–301, 2004, doi: 10.1007/S10016-004-0039-0.
[5] E. Larch et al., “Value of color duplex sonography for evaluation of tibioperoneal arteries in patients with femoropopliteal obstruction: A prospective comparison with anterograde intraarterial digital subtraction angiography,” 1997.
[6] M. E. A. P. M. Adriaensen et al., “Peripheral arterial disease: therapeutic confidence of CT versus digital subtraction angiography and effects on additional imaging recommendations,” Radiology, vol. 233, no. 2, pp. 385–391, Nov. 2004, doi: 10.1148/RADIOL.2331031595.
[7] A. P. Hingorani et al., “Limitations of and lessons learned from clinical experience of 1,020 duplex arteriography,” Vascular, vol. 16, no. 3, pp. 147–153, May 2008, doi: 10.2310/6670.2008.00014.
[8] R. Collins et al., “A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic,” researchonline.lshtm.ac.ukR Collins, G Cranny, J Burch, R Aguiar-Ibanez, D Craig, K Wright, E Berry, M GoughHealth technology assessment (Winchester, England), 2007•researchonline.lshtm.ac.uk, vol. 11, no. 20, 2007, Accessed: Apr. 18, 2024. [Online]. Available: https://researchonline.lshtm.ac.uk/id/eprint/9259/
[9] “Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studio dell’Ischemia Cronica Critica degli Arti Inferiori). The Study Group of Criticial Chronic Ischemia of the Lower Exremities - PubMed.” Accessed: Apr. 20, 2024. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/9314849/
[10] E. J. Armstrong et al., “Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease,” J Vasc Surg, vol. 60, no. 6, pp. 1565–1571, 2014, doi: 10.1016/J.JVS.2014.08.064.
[11] E. Faglia et al., “Effectiveness of combined therapy with angiotensin-converting enzyme inhibitors and statins in reducing mortality in diabetic patients with critical limb ischemia: an observational study,” Diabetes Res Clin Pract, vol. 103, no. 2, pp. 292–297, 2014, doi: 10.1016/J.DIABRES.2013.12.060.
[12] C. Baigent, C. Sudlow, R. Collins, and R. Peto, “Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients,” BMJ, vol. 324, no. 7329, pp. 71–86, Jan. 2002, doi: 10.1136/BMJ.324.7329.71.
[13] M. Gent, “A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee,” Lancet, vol. 348, no. 9038, pp. 1329–1339, Nov. 1996, doi: 10.1016/S0140-6736(96)09457-3.
[14] W. R. Hiatt et al., “Ticagrelor versus Clopidogrel in Symptomatic Peripheral Artery Disease,” N Engl J Med, vol. 376, no. 1, pp. 32–40, Jan. 2017, doi: 10.1056/NEJMOA1611688.
[15] S. S. ; Bosch et al., “Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial,” thelancet.comSS Anand, J Bosch, JW Eikelboom, SJ Connolly, R Diaz, P Widimsky, V Aboyans, M AlingsThe Lancet, 2018•thelancet.com, doi: 10.1016/S0140-6736(17)32409-1.
[16] P. P. Aung, H. G. Maxwell, R. G. Jepson, J. F. Price, and G. C. Leng, “Lipid-lowering for peripheral arterial disease of the lower limb,” Cochrane Database Syst Rev, vol. 2007, no. 4, 2007, doi: 10.1002/14651858.CD000123.PUB2.
[17] T. Meade, R. Zuhrie, C. Cook, and J. Cooper, “Bezafibrate in men with lower extremity arterial disease: randomised controlled trial,” BMJ, vol. 325, no. 7373, pp. 1139–1141, Nov. 2002, doi: 10.1136/BMJ.325.7373.1139.
[18] E. J. Mills et al., “Intensive statin therapy compared with moderate dosing for prevention of cardiovascular events: a meta-analysis of >40 000 patients,” Eur Heart J, vol. 32, no. 11, pp. 1409–1415, Jun. 2011, doi: 10.1093/EURHEARTJ/EHR035.
[19] F. Rodriguez, D. J. Maron, J. W. Knowles, S. S. Virani, S. Lin, and P. A. Heidenreich, “Association Between Intensity of Statin Therapy and Mortality in Patients With Atherosclerotic Cardiovascular Disease,” JAMA Cardiol, vol. 2, no. 1, pp. 47–54, Jan. 2017, doi: 10.1001/JAMACARDIO.2016.4052.
[20] S. C. Palmer et al., “Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis,” JAMA, vol. 316, no. 3, pp. 313–324, Jul. 2016, doi: 10.1001/JAMA.2016.9400.
[21] S. Nawaz, T. Cleveland, P. A. Gaines, and P. Chan, “Clinical risk associated with contrast angiography in metformin treated patients: a clinical review,” Clin Radiol, vol. 53, no. 5, pp. 342–344, 1998, doi: 10.1016/S0009-9260(98)80005-6.
[22] S. K. Goergen, G. Rumbold, G. Compton, and C. Harris, “Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin,” Radiology, vol. 254, no. 1, pp. 261–269, Jan. 2010, doi: 10.1148/RADIOL.09090690.
[23] F. Stacul et al., “Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines,” Eur Radiol, vol. 21, no. 12, pp. 2527–2541, 2011, doi: 10.1007/S00330-011-2225-0.
[24] D. L. Cull et al., “An early validation of the Society for Vascular Surgery lower extremity threatened limb classification system,” J Vasc Surg, vol. 60, no. 6, pp. 1535–1542, 2014, doi: 10.1016/J.JVS.2014.08.107.
[25] L. X. Zhan, B. C. Branco, D. G. Armstrong, and J. L. Mills, “The Society for Vascular Surgery lower extremity threatened limb classification system based on Wound, Ischemia, and foot Infection (WIfI) correlates with risk of major amputation and time to wound healing,” J Vasc Surg, vol. 61, no. 4, pp. 939–944, Apr. 2015, doi: 10.1016/J.JVS.2014.11.045.
[26] M. W. Causey et al., “Society for Vascular Surgery limb stage and patient risk correlate with outcomes in an amputation prevention program,” J Vasc Surg, vol. 63, no. 6, pp. 1563e2-1573.e2, Jun. 2016, doi: 10.1016/J.JVS.2016.01.011.
[27] J. D. Darling et al., “Predictive ability of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system following infrapopliteal endovascular interventions for critical limb ischemia,” J Vasc Surg, vol. 64, no. 3, pp. 616–622, Sep. 2016, doi: 10.1016/J.JVS.2016.03.417.
[28] W. P. Robinson et al., “Society for Vascular Surgery Wound, Ischemia, foot Infection (WIfI) score correlates with the intensity of multimodal limb treatment and patient-centered outcomes in patients with threatened limbs managed in a limb preservation center,” J Vasc Surg, vol. 66, no. 2, pp. 488-498.e2, Aug. 2017, doi: 10.1016/J.JVS.2017.01.063.
[29] A. M. Abu Dabrh et al., “The natural history of untreated severe or critical limb ischemia,” J Vasc Surg, vol. 62, no. 6, pp. 1642-1651.e3, Dec. 2015, doi: 10.1016/J.JVS.2015.07.065.
[30] T. R. S, M. D. Ingegno, L. Carlton, T. C. Flynn, and J. M. Seeger, “Limb-threatening ischemia due to multilevel arterial occlusive disease. Simultaneous or staged inflow/outflow revascularization,” Ann Surg, vol. 221, no. 5, pp. 498–506, May 1995, doi: 10.1097/00000658-199505000-00007.
[31] K. R. Wengerter, F. J. Veith, S. K. Gupta, E. Ascer, and S. P. Rivers, “Influence of vein size (diameter) on infrapopliteal reversed vein graft patency,” J Vasc Surg, vol. 11, no. 4, pp. 525–531, Apr. 1990, doi: 10.1067/MVA.1990.18327.
[32] A. Schanzer et al., “Technical factors affecting autogenous vein graft failure: observations from a large multicenter trial,” J Vasc Surg, vol. 46, no. 6, pp. 1180–1190, Dec. 2007, doi: 10.1016/J.JVS.2007.08.033.
[33] Z. G, U. H, and T. V, “Sequential aortofemoropopliteal/distal bypass for treatment of critical lower-limb ischaemia,” Cardiovasc Surg, vol. 3, no. 6, pp. 671–678, Dec. 1995, doi: 10.1016/0967-2109(96)82868-7.
[34] T. R. S, M. D. Ingegno, L. Carlton, T. C. Flynn, and J. M. Seeger, “Limb-threatening ischemia due to multilevel arterial occlusive disease. Simultaneous or staged inflow/outflow revascularization,” Ann Surg, vol. 221, no. 5, pp. 498–506, May 1995, doi: 10.1097/00000658-199505000-00007.
[35] Z. G, U. H, and T. V, “Sequential aortofemoropopliteal/distal bypass for treatment of critical lower-limb ischaemia,” Cardiovasc Surg, vol. 3, no. 6, pp. 671–678, Dec. 1995, doi: 10.1016/0967-2109(96)82868-7.
[36] V. Jongkind, G. J. M. Akkersdijk, K. K. Yeung, and W. Wisselink, “A systematic review of endovascular treatment of extensive aortoiliac occlusive disease,” J Vasc Surg, vol. 52, no. 5, pp. 1376–1383, 2010, doi: 10.1016/J.JVS.2010.04.080.
[37] W. Ye, C. W. Liu, J. B. Ricco, K. Mani, R. Zeng, and J. Jiang, “Early and late outcomes of percutaneous treatment of TransAtlantic Inter-Society Consensus class C and D aorto-iliac lesions,” J Vasc Surg, vol. 53, no. 6, pp. 1728–1737, 2011, doi: 10.1016/J.JVS.2011.02.005.
[38] K. Deloose et al., “Primary stenting is nowadays the gold standard treatment for TASC II A & B iliac lesions: the definitive MISAGO 1-year results,” J Cardiovasc Surg (Torino), vol. 58, no. 3, pp. 416–421, Jun. 2017, doi: 10.23736/S0021-9509.17.08303-3.
[39] J. B. Ricco and H. Probst, “Long-term results of a multicenter randomized study on direct versus crossover bypass for unilateral iliac artery occlusive disease,” J Vasc Surg, vol. 47, no. 1, 2008, doi: 10.1016/J.JVS.2007.08.050.
[40] K. W. H. Chiu, R. S. M. Davies, P. G. Nightingale, A. W. Bradbury, and D. J. Adam, “Review of direct anatomical open surgical management of atherosclerotic aorto-iliac occlusive disease,” Eur J Vasc Endovasc Surg, vol. 39, no. 4, pp. 460–471, Apr. 2010, doi: 10.1016/J.EJVS.2009.12.014.
[41] J. E. Indes et al., “Clinical outcomes of 5358 patients undergoing direct open bypass or endovascular treatment for aortoiliac occlusive disease: a systematic review and meta-analysis,” J Endovasc Ther, vol. 20, no. 4, pp. 443–455, Aug. 2013, doi: 10.1583/13-4242.1.
[42] J. L. Kang, V. I. Patel, M. F. Conrad, G. M. LaMuraglia, T. K. Chung, and R. P. Cambria, “Common femoral artery occlusive disease: contemporary results following surgical endarterectomy,” J Vasc Surg, vol. 48, no. 4, 2008, doi: 10.1016/J.JVS.2008.05.025.
[43] E. Ballotta, M. Gruppo, F. Mazzalai, and G. Da Giau, “Common femoral artery endarterectomy for occlusive disease: an 8-year single-center prospective study,” Surgery, vol. 147, no. 2, pp. 268–274, Feb. 2010, doi: 10.1016/J.SURG.2009.08.004.
[44] R. W. Chang, P. P. Goodney, J. H. Baek, B. W. Nolan, E. M. Rzucidlo, and R. J. Powell, “Long-term results of combined common femoral endarterectomy and iliac stenting/stent grafting for occlusive disease,” J Vasc Surg, vol. 48, no. 2, pp. 362–367, Aug. 2008, doi: 10.1016/J.JVS.2008.03.042.
[45] F. Baumann et al., “Endovascular treatment of common femoral artery obstructions,” J Vasc Surg, vol. 53, no. 4, pp. 1000–1006, Apr. 2011, doi: 10.1016/J.JVS.2010.10.076.
[46] R. F. Bonvini et al., “Endovascular treatment of common femoral artery disease: medium-term outcomes of 360 consecutive procedures,” J Am Coll Cardiol, vol. 58, no. 8, pp. 792–798, Aug. 2011, doi: 10.1016/J.JACC.2011.01.070.
[47] Y. Gouëffic et al., “Stenting or Surgery for De Novo Common Femoral Artery Stenosis,” JACC Cardiovasc Interv, vol. 10, no. 13, pp. 1344–1354, Jul. 2017, doi: 10.1016/J.JCIN.2017.03.046.
[48] J. J. Siracuse et al., “Endovascular treatment of the common femoral artery in the Vascular Quality Initiative,” J Vasc Surg, vol. 65, no. 4, pp. 1039–1046, Apr. 2017, doi: 10.1016/J.JVS.2016.10.078.
[49] J. Almasri et al., “A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia,” J Vasc Surg, vol. 68, no. 2, pp. 624–633, Aug. 2018, doi: 10.1016/J.JVS.2018.01.066.
[50] N. Azuma, H. Uchida, T. Kokubo, A. Koya, N. Akasaka, and T. Sasajima, “Factors influencing wound healing of critical ischaemic foot after bypass surgery: is the angiosome important in selecting bypass target artery?,” Eur J Vasc Endovasc Surg, vol. 43, no. 3, pp. 322–328, Mar. 2012, doi: 10.1016/J.EJVS.2011.12.001.
[51] B. E. Sumpio, R. O. Forsythe, K. R. Ziegler, J. G. Van Baal, M. J. A. Lepantalo, and R. J. Hinchliffe, “Clinical implications of the angiosome model in peripheral vascular disease,” J Vasc Surg, vol. 58, no. 3, pp. 814–826, Sep. 2013, doi: 10.1016/J.JVS.2013.06.056.
[52] F. Biancari and T. Juvonen, “Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis,” Eur J Vasc Endovasc Surg, vol. 47, no. 5, pp. 517–522, 2014, doi: 10.1016/J.EJVS.2013.12.010.
[53] K. J. Chae and J. Y. Shin, “Is Angiosome-Targeted Angioplasty Effective for Limb Salvage and Wound Healing in Diabetic Foot? : A Meta-Analysis,” PLoS One, vol. 11, no. 7, Jul. 2016, doi: 10.1371/JOURNAL.PONE.0159523.
[54] H. Jongsma, J. A. Bekken, G. P. Akkersdijk, S. E. Hoeks, H. J. Verhagen, and B. Fioole, “Angiosome-directed revascularization in patients with critical limb ischemia,” J Vasc Surg, vol. 65, no. 4, pp. 1208-1219.e1, Apr. 2017, doi: 10.1016/J.JVS.2016.10.100.
[55] M. Schillinger et al., “Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery,” N Engl J Med, vol. 354, no. 18, pp. 1879–1888, May 2006, doi: 10.1056/NEJMOA051303.
[56] R. R. Saxon, M. D. Dake, R. L. Volgelzang, B. T. Katzen, and G. J. Becker, “Randomized, multicenter study comparing expanded polytetrafluoroethylene-covered endoprosthesis placement with percutaneous transluminal angioplasty in the treatment of superficial femoral artery occlusive disease,” J Vasc Interv Radiol, vol. 19, no. 6, pp. 823–832, Jun. 2008, doi: 10.1016/J.JVIR.2008.02.008.
[57] M. D. Dake et al., “Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results,” Circ Cardiovasc Interv, vol. 4, no. 5, pp. 495–504, Oct. 2011, doi: 10.1161/CIRCINTERVENTIONS.111.962324.
[58] K. Rosenfield et al., “Trial of a Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease,” N Engl J Med, vol. 373, no. 2, pp. 145–153, Jul. 2015, doi: 10.1056/NEJMOA1406235.
[59] J. L. Mills, R. M. Fujitani, and S. M. Taylor, “Contribution of routine intraoperative completion arteriography to early infrainguinal bypass patency,” Am J Surg, vol. 164, no. 5, pp. 506–511, 1992, doi: 10.1016/S0002-9610(05)81190-0.
[60] D. F. Bandyk, J. L. Mills, V. Gahtan, and G. E. Esses, “Intraoperative duplex scanning of arterial reconstructions: fate of repaired and unrepaired defects,” J Vasc Surg, vol. 20, no. 3, pp. 426–433, 1994, doi: 10.1016/0741-5214(94)90142-2.
[61] V. K. L. Karanth, T. K. Karanth, and L. Karanth, “Lumbar sympathectomy techniques for critical lower limb ischaemia due to non-reconstructable peripheral arterial disease,” Cochrane Database Syst Rev, vol. 12, no. 12, Dec. 2016, doi: 10.1002/14651858.CD011519.PUB2.
[62] V. Vietto, J. V. A. Franco, V. Saenz, D. Cytryn, J. Chas, and A. Ciapponi, “Prostanoids for critical limb ischaemia,” Cochrane Database Syst Rev, vol. 1, no. 1, 2018, doi: 10.1002/14651858.CD006544.PUB3.
[63] F. B. Smith, A. Bradbury, and G. Fowkes, “Intravenous naftidrofuryl for critical limb ischaemia,” Cochrane Database of Systematic Reviews, Jul. 2012, doi: 10.1002/14651858.CD002070.PUB2/ABSTRACT.
[64] P. Kranke, M. H. Bennett, M. Martyn-St James, A. Schnabel, S. E. Debus, and S. Weibel, “Hyperbaric oxygen therapy for chronic wounds,” Cochrane Database Syst Rev, vol. 2015, no. 6, Jun. 2015, doi: 10.1002/14651858.CD004123.PUB4.
[65] F. L. Game et al., “Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review,” Diabetes Metab Res Rev, vol. 32 Suppl 1, pp. 154–168, Jan. 2016, doi: 10.1002/DMRR.2707.
[66] K. T. B. Santema et al., “Hyperbaric Oxygen Therapy in the Treatment of Ischemic Lower- Extremity Ulcers in Patients With Diabetes: Results of the DAMO2CLES Multicenter Randomized Clinical Trial,” Diabetes Care, vol. 41, no. 1, pp. 112–119, Jan. 2018, doi: 10.2337/DC17-0654.
[67] S. M. O. Peeters Weem, M. Teraa, G. J. De Borst, M. C. Verhaar, and F. L. Moll, “Bone Marrow derived Cell Therapy in Critical Limb Ischemia: A Meta-analysis of Randomized Placebo Controlled Trials,” Eur J Vasc Endovasc Surg, vol. 50, no. 6, pp. 775–783, Dec. 2015, doi: 10.1016/J.EJVS.2015.08.018.
[68] M. Elsherif, W. Tawfick, P. Canning, N. Hynes, and S. Sultan, “Quality of time spent without symptoms of disease or toxicity of treatment for transmetatarsal amputation versus digital amputation in diabetic patients with digital gangrene,” Vascular, vol. 26, no. 2, pp. 142–150, Apr. 2018, doi: 10.1177/1708538117718108.
[69] H. Aziz et al., “The influence of do-not-resuscitate status on the outcomes of patients undergoing emergency vascular operations,” J Vasc Surg, vol. 61, no. 6, pp. 1538–1542, Jun. 2015, doi: 10.1016/J.JVS.2014.11.087.
[70] J. J. Siracuse et al., “Impact of ‘Do Not Resuscitate’ Status on the Outcome of Major Vascular Surgical Procedures,” Ann Vasc Surg, vol. 29, no. 7, pp. 1339–1345, Oct. 2015, doi: 10.1016/J.AVSG.2015.05.014.
[71] A. B. Reed, C. Delvecchio, and J. S. Giglia, “Major lower extremity amputation after multiple revascularizations: was it worth it?,” Ann Vasc Surg, vol. 22, no. 3, pp. 335–340, May 2008, doi: 10.1016/J.AVSG.2007.07.039.
[72] D. L. Rollins, J. B. Towne, V. M. Bernhard, and P. L. Baum, “Isolated profundaplasty for limb salvage,” J Vasc Surg, vol. 2, no. 4, pp. 585–590, Jul. 1985, doi: 10.1067/MVA.1985.AVS0020585.
[73] B. J. Moran, P. Buttenshaw, M. Mulcahy, and K. P. Robinson, “Through‐knee amputation in high‐risk patients with vascular disease: Indications, complications and rehabilitation,” British Journal of Surgery, vol. 77, no. 10, pp. 1118–1120, 1990, doi: 10.1002/bjs.1800771014.
[74] S. M. Taylor et al., “‘Successful outcome’ after below-knee amputation: an objective definition and influence of clinical variables,” Am Surg, vol. 74, no. 7, pp. 607–612, Jul. 2008, doi: 10.1177/000313480807400707.
[75] L. Bradley and S. G. B. Kirker, “Secondary prevention of arteriosclerosis in lower limb vascular amputees: a missed opportunity,” Eur J Vasc Endovasc Surg, vol. 32, no. 5, pp. 491–493, Nov. 2006, doi: 10.1016/J.EJVS.2006.07.005.
[76] J. D. Glaser et al., “Fate of the contralateral limb after lower extremity amputation,” J Vasc Surg, vol. 58, no. 6, 2013, doi: 10.1016/J.JVS.2013.06.055.
[77] T. A. Abbruzzese et al., “Statin therapy is associated with improved patency of autogenous infrainguinal bypass grafts,” J Vasc Surg, vol. 39, no. 6, pp. 1178–1185, Jun. 2004, doi: 10.1016/j.jvs.2003.12.027.
[78] P. K. Henke et al., “Patients undergoing infrainguinal bypass to treat atherosclerotic vascular disease are underprescribed cardioprotective medications: Effect on graft patency, limb salvage, and mortality,” J Vasc Surg, vol. 39, no. 2, pp. 357–365, 2004, doi: 10.1016/j.jvs.2003.08.030.
[79] J. Brown, A. Lethaby, H. Maxwell, A. J. Wawrzyniak, and M. H. Prins, “Antiplatelet agents for preventing thrombosis after peripheral arterial bypass surgery,” Cochrane Database Syst Rev, no. 4, 2008, doi: 10.1002/14651858.CD000535.PUB2.
[80] R. Bedenis, A. Lethaby, H. Maxwell, S. Acosta, and M. H. Prins, “Antiplatelet agents for preventing thrombosis after peripheral arterial bypass surgery,” Cochrane Database Syst Rev, vol. 2015, no. 2, Feb. 2015, doi: 10.1002/14651858.CD000535.PUB3.
[81] B. D. Suckow et al., “Statin therapy after infrainguinal bypass surgery for critical limb ischemia is associated with improved 5-year survival,” J Vasc Surg, vol. 61, no. 1, pp. 126-133.e1, Jan. 2015, doi: 10.1016/J.JVS.2014.05.093.
[82] S. D. Hobbs and A. W. Bradbury, “Smoking cessation strategies in patients with peripheral arterial disease: An evidence-based approach,” European Journal of Vascular and Endovascular Surgery, vol. 26, no. 4, pp. 341–347, Oct. 2003, doi: 10.1016/S1078-5884(03)00356-3.
[83] E. M. Willigendael, J. A. W. Teijink, M. L. Bartelink, R. J. G. Peters, H. R. Büller, and M. H. Prins, “Smoking and the patency of lower extremity bypass grafts: A meta-analysis,” J Vasc Surg, vol. 42, no. 1, pp. 67–74, 2005, doi: 10.1016/j.jvs.2005.03.024.
[84] B. JJ et al., “Results of the randomized, placebo-controlled clopidogrel and acetylsalicylic acid in bypass surgery for peripheral arterial disease (CASPAR) trial,” J Vasc Surg, vol. 52, no. 4, pp. 825-833.e2, 2010, doi: 10.1016/J.JVS.2010.04.027.
[85] A. A. Gassman et al., “Aspirin usage is associated with improved prosthetic infrainguinal bypass graft patency,” Vascular, vol. 22, no. 2, pp. 105–111, 2014, doi: 10.1177/1708538112473977.
[86] D. L. Bhatt et al., “Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events,” N Engl J Med, vol. 354, no. 16, pp. 1706–1717, Apr. 2006, doi: 10.1056/NEJMOA060989.
[87] G. Tepe et al., “Management of peripheral arterial interventions with mono or dual antiplatelet therapy--the MIRROR study: a randomised and double-blinded clinical trial,” Eur Radiol, vol. 22, no. 9, pp. 1998–2006, Sep. 2012, doi: 10.1007/S00330-012-2441-2.
[88] F. F. Strobl et al., “Twelve-month results of a randomized trial comparing mono with dual antiplatelet therapy in endovascularly treated patients with peripheral artery disease,” J Endovasc Ther, vol. 20, no. 5, pp. 699–706, Oct. 2013, doi: 10.1583/13-4275MR.1.
[89] K. Cassar, I. Ford, M. Greaves, P. Bachoo, and J. Brittenden, “Randomized clinical trial of the antiplatelet effects of aspirin-clopidogrel combination versus aspirin alone after lower limb angioplasty,” Br J Surg, vol. 92, no. 2, pp. 159–165, Feb. 2005, doi: 10.1002/BJS.4810.
[90] J. L. Mills, C. L. Wixon, D. C. James, J. Devine, A. Westerband, and J. D. Hughes, “The natural history of intermediate and critical vein graft stenosis: recommendations for continued surveillance or repair,” J Vasc Surg, vol. 33, no. 2, pp. 273–280, 2001, doi: 10.1067/MVA.2001.112701.
[91] G. J. Landry, G. L. Moneta, L. M. Taylor, J. M. Edwards, R. A. Yeager, and J. M. Porter, “Long-term outcome of revised lower-extremity bypass grafts,” J Vasc Surg, vol. 35, no. 1, pp. 56–63, 2002, doi: 10.1067/mva.2002.120040.
[92] L. L. Nguyen et al., “Infrainguinal vein bypass graft revision: Factors affecting long-term outcome,” J Vasc Surg, vol. 40, no. 5, pp. 916–923, 2004, doi: 10.1016/j.jvs.2004.08.038.
[93] T. Elraiyah et al., “A systematic review and meta-analysis of off-loading methods for diabetic foot ulcers,” J Vasc Surg, vol. 63, no. 2 Suppl, pp. 59S-68S.e2, Feb. 2016, doi: 10.1016/J.JVS.2015.10.006.
[94] A. J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist, “The global burden of diabetic foot disease,” Lancet, vol. 366, no. 9498, pp. 1719–1724, Nov. 2005, doi: 10.1016/S0140-6736(05)67698-2.